Carboxy-terminal modulator protein induces Akt phosphorylation and activation, thereby enhancing antiapoptotic, glycogen synthetic, and glucose uptake pathways.
نویسندگان
چکیده
Carboxy-terminal modulator protein (CTMP) was identified as binding to the carboxy terminus of Akt and inhibiting the phosphorylation and activation of Akt. In contrast to a previous study, we found CTMP overexpression to significantly enhance Akt phosphorylation at both Thr(308) and Ser(473) as well as the kinase activity of Akt, while phosphatidylinositol 3-kinase (PI3-kinase) activity was unaffected. Translocation of Akt to the membrane fraction was also markedly increased in response to overexpression of CTMP, with no change in the whole cellular content of Akt. Furthermore, the phosphorylations of GSK-3beta and Foxo1, well-known substrates of Akt, were increased by CTMP overexpression. On the other hand, suppression of CTMP with small interfering RNA partially but significantly attenuated this Akt phosphorylation. The cellular activities reportedly mediated by Akt activation were also enhanced by CTMP overexpression. UV-B-induced apoptosis of HeLa cells was significantly reversed not only by overexpression of the active mutant of Akt (myr-Akt) but also by that of CTMP. Increases in glucose transport activity and glycogen synthesis were also induced by overexpression of either myr-Akt or CTMP in 3T3-L1 adipocytes. Taking these results into consideration, it can be concluded that CTMP induces translocation of Akt to the membrane and thereby increases the level of Akt phosphorylation. As a result, CTMP enhances various cellular activities that are principally mediated by the PI3-kinase/Akt pathway.
منابع مشابه
Sevoflurane preconditioning-induced neuroprotection is associated with Akt activation via carboxy-terminal modulator protein inhibition.
BACKGROUND Sevoflurane preconditioning has a neuroprotective effect, but the underlying mechanism is not fully understood. The aim of the present investigation was to evaluate whether sevoflurane-induced cerebral preconditioning involves inhibition of carboxy-terminal modulator protein (CTMP), an endogenous inhibitor of Akt, in a rat model of focal cerebral ischaemia. METHODS Male Sprague-Dawl...
متن کاملHigh Density Lipoprotein (HDL) Promotes Glucose Uptake in Adipocytes and Glycogen Synthesis in Muscle Cells
BACKGROUND High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3)H...
متن کاملRole of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle.
The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents an...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملDissociation between insulin-mediated signaling pathways and biological effects in placental cells: role of protein kinase B and MAPK phosphorylation.
Beyond the presence of insulin receptors, little is known of the mechanisms underlying the biological effects of insulin in the placenta. We show that phosphorylation of MAPK and protein kinase B were enhanced 286 +/- 23% and 393 +/- 17% upon insulin stimulation of JAr placental cells. MAPK activation was prevented by pretreatment with PD98059 but was unaffected by wortmannin. Insulin stimulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 293 5 شماره
صفحات -
تاریخ انتشار 2007